

Диденко А.Н.^{1,2}, Носырев М.Ю.¹, Шевченко Б.Ф.¹, Гильманова Г.З.¹, Козлова О.В.¹

¹ Институт тектоники и геофизики им. Ю.А. Косыгина ДВО РАН, Хабаровск, Россия ^{1,2} Геологический институт РАН, Москва, Россия

Иркутск, октябрь 2016

Схема тектонического районирования восточной части Центрально-Азиатского складчатого пояса и смежных структур и прилегающих территорий (по «Глубинное строении ...» 2006)

Составлена с использованием материалов [Тектоника..., 2005], [Зоненшайн и др., 1979, 1990], [Моссаковский и др., 1993], [Парфенов и др., 2003], [Li Jianghai et al, 2000].

Условные обозначения

Сибирская и Северо-Китайская платформы:

- 1 мезоархейские континентальные блоки;
- 2 блоки неоархейских и палеопротерозойских метаморфических пород;
- 3 зеленокаменные пояса Алдано-Станового щита;
- 4 палеопротерозойские рифты: Улканский;
- 5 рифей-палеозойский платформенный чехол;

Центрально-Азиатский орогенный пояс:

- 6 микроконтиненты с докембрийским фундаментом (буквы в кружках): АМ Аргуно-Мамынский, Д – Дягдачи, ЦБ – Цзямусы- Буреинский, ХА – Ханкайский;
- 7-10 орогенные пояса:
- 7 каледонские (СС Селенга-Становой, ШМ Шара-Мурэнский, СХ-Северо-Хинганский), 8 герцинские (ЛС Луньцзян-Селемджинский), 9 позднегерцинско-индосинийские (МО Монголо-Охотский, СЛ Солонкерский), 10 киммерийские (СА Сихотэ-Алинский);
- 11-12 вулканические пояса: 11 мезозойские, 12 позднемезозойско-кайнозойские;
- 13 мезозойско-кайнозойские терригенные впадины (цифры в квадратах): 1 Чульманская, 2 -Токинская, 3 - Верхне-Зейская, 4 – Амуро-Зейская, 5 – Среднеамурская, 6 – Сунляо, 7 – Хайлар, 8 –Ляохэ, 9 –Северо_Китайская;
- 14 основные разломы (цифры в кружках):1 Становой, 2 Джелтулакский, 3 Унахинский, 4 Ланский, 5 Монголо-Охотский, 6 Северо-Тукурингрский, 7 Южно-Тукурингрский, 8 Улигданский, 9 Дербуганский, 10 Синьлинский, 11 Нэньцзянский, 12 Западно-Туранский, 13 Тахстахский, 14 Харбинский, 15 Хинганский, 16 Куканский, 17 Илань-Итунский, 18 Муданьцзянский, 19 Дунми-Алчанский, 20 Чифен-Телинский,21 Тунляо; 22 Арсеньевский, 23 Центрально-Сихотэ-Алинский, 24 Ципинский, 25 Пауканский, 26 Шара-Мурэнский;
- 15 граница исследований Сихотэ-Алинского орогена и прилегающих территорий

Расшифровке тектонического строения зоны сочленения структур Центрально-Азиатского подвижного пояса (ЦАПП) и мезо-кайнозойских образований Сихотэ-Алиньской складчатой (орогенной) системы, входящей в состав Тихоокеанского подвижного пояса (ТПП), посвящено большое количество работ. Несмотря на это, до сих пор остаются ряд нерешенных (или дискутируемых) проблем. Одна из них – это вопрос о границах между Сихотэ-Алиньскими структурами и Центрально-Азиатским поясом.

В последние годы при разномасштабных тектонических и геодинамических исследованиях земной коры активно применяется подход, основанный на изучении аномального магнитного и геотермического полей. Суть такого рода исследований сводится к построению по аномальному магнитному полю модели магнитоактивного слоя земной коры (расчет глубин подошвы и кровли магнитовозмущающих тел). В модели принимается, что глубина нижней границы слоя соответствует глубине изотермы 578° С, при которой магнетит переходит из ферримагнитного состояния в парамагнитное (температура Кюри магнетита).

Цель работы - рассмотрение вопроса о глубинных (коровых) границах между этими трансрегиональными структурами, оценка влияния геотермического фактора на геодинамические особенности исследуемого региона.

Исходные материалы - аномальное магнитном поле (цифровая модель, исходный масштаб данных 1: 1 000 000), геотермический атлас Сибири и Дальнего Востока (е-версия).

Рассматриваемые вопросы:

 Методические приемы построения магнитных моделей
 Результаты построения магнитные модели, тектоническая интерпретация

3. Сопоставление магнитных и геотермических моделей, их взаимосвязь, геодинамическая интерпретация

Метод исследования: расчет глубин нижней границы магнитоактивного слоя (поверхность точки кюри)

• Расчет данной поверхности осуществлен с использованием следующего выражения:

• Hb=
$$2Z_0 - Z_t$$
,

- где, Hb глубина поверхности точки Кюри; Z₀ глубина центра магнитоактивного слоя; Z_t – глубина верхней границы магнитоактивного слоя.
- Для определения значений Z₀, Z_t используются характеристики энергетического спектра магнитного поля в области его наиболее длинноволновой части (в частности крутизна спада графика спектра).

Реализация данной методики

1. Исследуемая территория разбивается на отдельные листы размерами (100-150)×(100-150) км, которые представляются в виде гридов с размером ячейки 1000 м. Все последующие операции выполняются для каждого листа отдельно.

2. Выполняется редукция магнитного поля к полюсу (RTP). Данная процедура выполняется исходя из того, что все спектральные характеристики рассчитаны для вертикально намагниченных призм.

Программ для выполнения данной редукции достаточно много, в нашем случае использовалась утилита из Oasis montaj (OM), имеющая название varyrtp.

Расчетные формулы

Вычисление спектров для оценки центра магнитного тела и его верхней кромки.

Согласно имеющимся работам для оценки этих параметров используется следующая методика и формулы

Центр тела:

$$Ln\left[\frac{P^{\frac{1}{2}}}{|S|}\right] = LnA - 2\pi|S|z_0$$

Где: Zo –центр тела, P спектр, S –циклическая частота.

Верхняя кромка:

$$\left|P^{\frac{1}{2}}\right| = LnB - 2\pi \left|S\right|z_t$$

Где: Zt – верхняя кромка

А и В – постоянные зависящие от намагниченности.

Ln

для Z₀ берется начальная наиболее длинноволновая крутая часть спектра, для Z_t – следующая по наклону часть спектра.

Расчет обеих глубин выполняется по пяти точкам с аппроксимацией их прямой линией. Практически для Zo из таблицы берётся первая максимальная глубина, вычисленная по пяти первым точкам спектра в области наиболее низких частот.

Рассчитывается глубина нижней границы как:

 $Hb=2Z_o-Z_t$

Полученная глубина относится к центру каждого листа.

На основе полученных данных строится карта распределения параметров в изолиниях.

Пример расчета радиального спектра

	E18	• (*)	f_{x}	1.66075																			
	A	В	С	D	E	F	G	Н		J	K	L	Μ	N	0	P	Q	R	S	Т	U	V	
1	1 C/K # Ln_			3D	5D	S=2rtf	1/2LnP	InS	1/2InP-InS	∆5_1/2InP-InS ∆5_ S		∆5_LnT	Zo Z	Zt									
2	0.0	0 1.00	0.41	0.00	*	0.00							*	*				1/2Ini	P-InS				
3	0.03	L 6.34	5.81	0.00	*	0.06	2.90	-2.88	5.78				*	*	800 -								
4	0.03	2 12.45	4.57	6.57	0.00	0.11	2.29	-2.19	4.47						0.00								
5	0.03	3 19.06	4.33	1.20	3.41	0.17	2.17	-1.78	3.95	-2.62	0.22	-1.01	-11.68	-4.51	6.00								
6	0.04	4 24.41	4.30	2.45	2.91	0.22	2.15	-1.49	3.64	-1.80	0.22	-0.70	-8.03	-3.14	4.00								
7	0.04	4 32.58	3.78	5.07	4.39	0.28	1.89	-1.27	3.16	-1.76	0.22	-0.91	-7.83	-4.06	2 00								
8	0.0	5 37.00	3.16	5.67	4.54	0.34	1.58	-1.09	2.67	-1.59	0.22	-0.89	-7.07	-3.98	2.00								
9	0.0	5 43.96	2.51	. 2.90	3.43	0.39	1.26	-0.93	2.19	-1.42	0.22	-0.83	-6.32	-3.70	0.00				0.00		→1/2lnP-lr	ns	
10	0.0	7 50.56	2.51	. 1.74	2.43	0.45	1.26	-0.80	2.06	-1.13	0.22	-0.62	-5.04	-2.77	-2.00 +	J 1	.00	2.00	3.00	4.00			
11	0,0	3 55.92	2.12	2.64	1.89	0.50	1.06	-0.68	1.74	-0.79	0.22	-0.34	-3.54	-1.52	-4.00								
12	0.0	9 64.10	1.92	1.30	2.55	0.56	0.96	-0,58	1.54	-1.12	0.22	-0.71	-4.97	-3.17	-4,00								
13	0.1	67.74	1.83	3.70	3.27	0.62	0.91	-0,48	1.40	-1.05	0.22	-0.69	-4.70	-3.06	-6.00 +								
14	0.1:	L 75.81	1.09	4.82	3.75	0.67	0.55	-0,40	0.94	-1.06	0.22	-0.72	-4.71	-3.21	-8.00 🕹								
15	0.13	2 82.33	0.75	2.72	3.24	0.73	0.37	-0.32	0.69	-1.10	0.22	-0.79	-4.88	-3.50	-							<u> </u>	
16	0.1	8 87.11	0.48	2.18	1.97	0.79	0.24	-0.24	0.48	-0.71	0.22	-0.42	-3.15	-1.87				1/2	l nP				
17	0.1	95.36	0.26	1.02	1.64	0.84	0.13	-0.17	0.30	-0.70	0.22	-0.44	-3.14	-1.95				-72	L 111				
18	0.1	1 98.60	0.25	1.71	1.66	0.90	0.13	-0.11	0.23	-0.62	0.22	-0.37	-2.76	-1.64	4.00						-		
19	0.1	5 108.59	-0.13	2.26	1.82	0.95	-0.06	-0.05	-0.02	-0.60	0.22	-0.36	-2.66	-1.61	3.00 -	•					-		
20	0.10	5 112.72	-0.25	1.51	2.11	1.01	-0.13	0.01	-0.14	-0.76	0.22	-0.54	-3.40	-2.41	2.00	-					-		
21	0.1	7 118.91	-0.46	2.56	2.21	1.07	-0.23	0.06	-0.30	-0.67	0.22	-0.46	-2.98	-2.04	1.00						-		
22	0.1	3 126.34	-0.83	2.57	2.14	1.12	-0.41	0.12	-0.53	-0.63	0.22	-0.43	-2.82	-1.93	0.00					1	1		
23	0.1	9 130.68	-1.04	1.30	1.84	1.18	-0.52	0.16	-0.68	-0.66	0.22	-0.47	-2.96	-2.11	-1.00 ^{0,0}	0 0.50	1.00 1	.50 2.00	2.50	3.00 3.	50	.nP	
24	0.2	140.04	-1.12	1.65	1.67	1.23	-0.56	0.21	-0.77	-0.56	0.22	-0.38	-2.49	-1.68	-2.00								
25	0.2	143.26	-1.41	. 2.06	1./1	1.29	-0.70	0.25	-0.96	-0.52	0.22	-0.34	-2.31	-1.53	-3.00 -						-		
26	0.2	150.61	-1.58	1.42	1.57	1.35	-0.79	0.30	-1.09	-0.54	0.22	-0.37	-2.39	-1.64	-4 00 -						_		
27	0.2	2 157.85	-1.73	1.22	1.62	1.40	-0.86	0.34	-1.20	-0.57	0.22	-0.41	-2.54	-1.82	-5.00 -					*****	_		
28	0.2	3 162.83	-1.86	2.23	1.92	1.46	-0.93	0.38	-1.31	-0.55	0.22	-0.40	-2.45	-1.76	-3,00 C 00								
29	0.24	+ 170.91	-2.23	2,30	2.11	1.51	-1.11	0.42	-1.53	-0.60	0.22	-0.45	-2.68	-2.02	-6.00						-		
30	0.2	102.04	-2.37	1.81	2.28	1.57	-1.19	0.45	-1.64	-0.71	0.22	-0.57	-3.10	-2.52									
31	0.2	7 100.00	-2.63	2.74	2.75	1.63	-1.32	0.49	-1.80	-0.76	0.22	-0.62	-3.37	-2.76									
32	0.2	10412	-2.99	3.70	3.44	1.08	-1.49	0.52	-2.01	-0.87	0.22	-0.74	-3.90	-3.30									
22	0.2	202.01	-5.40	3,80	3.29	1.74	-1./3	0.55	-2.29	-0.80	0.22	-0.07	-5.58	-5.00									
54	0.2	202.01	-5.85	2.30	2.91	1.80	-1.93	0.59	-2.51	-0.85	0.22	-0.72	-5.78	-5.22									

Расчетные модели магнитоактивного слоя

Условные обозначения к схеме интерпретации (слайд 10)

Тектонические структуры по тектонической схеме [слайд]:

- 1 Сибирская платформа;
- 2 Микроконтиненты: ЦБ Цзямусы-Буреинский, ХА Ханкайский;
- 3 Монголо-Охотский орогенный пояс;
- 4 Сихотэ-Алиньский орогенный пояс;
- 5 мезозойско кайнозойские терригенные бассейны: Среднеамурский – 1, Приханкайский – 2;
- 6 разломные системы и разломы: Центрально-Сихотэалинский 1;
- 7 Граница Центрально-Азиатского и Тихоокеанского тектонических поясов;
- 8 изопахиты кровли (а) и подошвы (б) магнитоактивного слоя;
- 9 предполагаемы глубинные границы делимости магнитоактивного слоя на разноструктурные области.

Делимость верхней части земной коры на основании магнитных моделей

- На основании анализа морфологических особенностей карты изопахит кровли магнитоактивного слоя установлена делимость исследуемой территории на три области (рис. а). Первая (западная) относится к структурам Цзямусы-Буреинского (глубины 1.5 – 2.5 км) и Ханкайского (глубины 2.5 – 4.5 км) микроконтинетов и частично охватывает Монголо-Охотский орогенный пояс (глубины 2.5 – 3.5 км). Эти структуры входят в состав ЦАПП. Вторая (центральная, глубины 2 – 2.5 км) и третья (восточная, глубины 1.5 – 2.5 км) охватывают Сихотэ-Алиньский ороген (ТПП).
- Различия в структуре морфологической поверхности подошвы магнитоактивного слоя (интервал глубин от 15 до 27 км) позволили разделить исследуемую территорию, на этом уровне глубин, на две области – западную и восточную (рис. б). На этом уровне происходит своеобразное «размывание» выделенной на предыдущем уровне глубин центральной области.

Схема пунктов измерений теплового потока и сопоставление расчетных глубин подошвы магнитоактивного слоя

Зависимость глубин изотермы 578 гр. С, рассчитанных по аномальному магнитному полю и тепловому потоку

Глубина изотермы 578 гр. С, км (расчет по тепловому потоку)

Графики распределения расчетных глубин поверхности точки Кюри в широтном направлении

Тепловые данные

Магнитные данные

Совмещенные графики распределения глубин до поверхности точки Кюри

Интервалы выборок значений глубин:

```
Слайд 18:
верхний график: пункты 1 – 44 /
128° в.д. – 135° в.д.
нижний график: пункты 45 – 67 /
135° в.д. – 140° в.д.
```

Слайд 19: А - пункты 1 – 25 / 128° в.д. – 132° в.д. **В** – пункты 25 – 44 / 132° в.д. – 135° в.д. **С** – пункты 45 – 67 / 135° в.д. –

140[°] в.д.

Глубины по магнитному потоку, СРD, km

Глубины по тепловому потоку, Н (578), km

Глубины по тепловому потоку, Н (578), km

Основные выводы:

Анализ магнитных моделей позволяет уточнить положение и особенности границы сочленения ЦАПП и ТПП. Предполагается восточное падение границы раздела, что является дополнительным доводом о надвиговом характере пород Сихотэ-Алиньского орогена на комплексы пород ЦАПП.

Сопоставление магнитной и геотермической модели – подчеркивает зональность в строении земной коры в направлении запад – восток, наличие «нормальных» и «аномальных» составляющих общей модели глубинного строения верхней части земной коры. Возможные причины – различия в средней теплопроводности горных пород и/или в наличии дополнительных источников геотермического потока.

Проявления современной геодинамической активности (распределение сейсмических событий) и особенности её структуры (меридиональная зональность) находит своё отражение в структурах магнитной и геотермической модели.

